How to use the APHLIS calculator You want to know how much cereal grain is lost? Science-based reasonable estimates are presented in interactive maps or in tables on the APHLIS website: www.aphlis.net This presentation is about the Downloadable Calculator that you can use to estimate the magnitude of losses at: - different links in the postharvest chain - different harvest seasons for your focal area and crop, and you can also - obtain information on the quality of these estimates #### From the APHLIS website: www.aphlis.net # Once downloaded, the APHLIS Calculator opens in Excel #### Cereals Postharvest Loss Calculator for AfricaVersion 2.7 - 17/02/2014 Production | Enter the GEOGRAPHICAL DATA data by replacing the red figures Labelling Area of observation Botswana North-West Year 2013 Enter another figure below to select a crop: 1=maize; 2=rice; 3=sorghum; 4=millet; 5=wheat; 6=barley; 7=teff. Cereal n° 1 Cereal Maize Enter another figure below to select a climate: 1=Tropical Savannah (Aw) 2=Hot Semi-Arid (BSh) 3=Humid Subtropical | f; 8=fonio | | | | | | | | | | |---|---|--|--|--|--|--|--|--|--|--| | Enter another figure below to select a crop: 1=maize; 2=rice; 3=sorghum; 4=millet; 5=wheat; 6=barley; 7=teff Cereal Maize | f; 8=fonio | | | | | | | | | | | Enter another figure below to select a crop: 1=maize; 2=rice; 3=sorghum; 4=millet; 5=wheat; 6=barley; 7=teff Cereal n° Cereal Maize | f; 8=fonio | | | | | | | | | | | Cereal Maize | | | | | | | | | | | | | 1 | | | | | | | | | | | Enter another figure below to select a climate: 1=Tropical Savannah (Aw), 2=Hot Semi-Arid (RSh), 3=Humid Subtropical | | | | | | | | | | | | Highland (Cwb) 5=Hot Desert (BWh) | (Cwa) 4=Subtropical | | | | | | | | | | | Climate n° 1 | | | | | | | | | | | | Climate Tropical Savannah (Aw) | Tropical Savannah (Aw) | | | | | | | | | | | Enter the SEASONAL DATA by replacing the red figures | | | | | | | | | | | | 1st season 2nd season 3rd sea | ason | | | | | | | | | | | Farm type small large small large small | large | | | | | | | | | | | Production 1400 tonnes 1000 tonnes 700 tonnes 0 tonnes 0 tonnes | 0 tonnes | | | | | | | | | | | Marketed at harvest 50 % (0-100) 90 % (0-100) 20 % (0-100) 0 % (0-100) 0 % (0-100) | 0 % (0-100) | | | | | | | | | | | Rain at harvest 1 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes | 1=yes | | | | | | | | | | | Storage duration 3 months 6 months 6 months 0 months 0 months | 0 months | | | | | | | | | | | Larger Grain Borer 1 1=yes 1 1=yes 1=yes 1=yes 1=yes | 1=yes | | | | | | | | | | | PHI (%) Calculation: Maize - Retewana North-West - 2013 | | | | | | | | | | | | PHL (%) Calculation: Maize - Botswana North-West - 2013 | | | | | | | | | | | | 1st season 2nd season 3rd sea | | | | | | | | | | | | Farm type small large small large small Share of production 58 42 100 | large | | | | | | | | | | | | atara marke | | | | | | | | | | | | store market | | | | | | | | | | | Share 29 29.2 = 4 37.5 = 80 20.0 = 50 = 4 = 50 = 50 = 50 = 50 = 50 = 50 | t t t | | | | | | | | | | | adjusted PHL profile loss increment loss increment remaining grain loss increment loss increment remaining grain loss increment remaining grain loss increment loss increment loss increment remaining grain loss increment | adjusted PHL pr remaining grain loss increment remaining grain loss increment | | | | | | | | | | | | 3.8 | | | | | | | | | | | | 3.5 | | | | | | | | | | | | 2.3 | | | | | | | | | | | Winnowing | | | | | | | | | | | | Transport to farm 24 23 0.5 23 0.5 19 3 0.1 20 0.6 24 60 1.7 1.7 0.4 1.9 | 1 9 | | | | | | | | | | Enter the SEASONAL DATA by replacing the red figures # Enter your data: Select crop and climate zone #### Cereals Postharvest Loss Calculator for AfricaVersion 2.7 - 17/02/2014 | | Home | Data Entry Area | PHL matrix | PHL estimates | Graphs | Quality | Sources | Composite
PHL | References | Production calculator | | | | | | |---------------|---------|---|------------------|---------------------|-------------------------------|---------------|----------|------------------|-----------------|-----------------------|--|--|--|--|--| | | | Enter the GEOGRAPHICAL DATA data by replacing the red figures | | | | | | | | | | | | | | | Labelling | | Area of observation Botswana North-West Year 2013 | | | | | | | | | | | | | | | | | Enter another figure below to select a crop: 1=maize; 2=rice; 3=sorghum; 4=millet; 5=wheat; 6=barley; 7=teff; 8=fonio | | | | | | | | | | | | | | | Cereal n° | | 1 | | | | | | | | | | | | | | | Cereal | | | | | Maize | | | | | | | | | | | | | Enter a | nother figure below | v to select a cl | imate: 1=Tropical S | avannah (Aw)
d (Cwb) 5=Hot | | | 3=Humid Subt | ropical (Cwa) 4 | =Subtropical | | | | | | | A !!40 | | | | i iigiiiaii | 4 | 2000.1 (2001) | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | Climate n° | | | | | | | | | | | | | | | | | Climate n° | | | | Trop | ical Savanı | nah (Aw) | | | | | | | | | | | | | | Er | Trop | | | red figu | res | | | | | | | | ## Your location, and the year of interest | | Ce | reals Po | stharve | st Loss Cal | culato | for AfricaVersion 2.7 - 17/02/2014 | | | | | | | | | |------------|--------------|----------------|----------------|--------------------------------|------------------------------|--|---------|---------|------------------|-----------------|-----------------------|--|--|--| | | Home Data | a Entry Area | PHL matrix | PHL estimates | Graphs | | Quality | Sources | Composite
PHL | References | Production calculator | | | | | | | | Enter t | he GEOGRAPHIC | AL DATA de | by replacing the red figures | | | | | | | | | | Labelling | | Area o | of observation | Botswana North-W | est | Year 2013 | | | | | | | | | | | E | nter another | figure below t | o select a crop: 1=r | naize; 2=rice; | e; 3=sorghum; 4=millet; 5=wheat; 6=barley; 7=teff; 8=fonio | | | | | | | | | | Cereal n° | | | | | 1 | | | | | | | | | | | Cereal | | | | | Maize | е | | | | | | | | | | | Enter anothe | er figure belo | lect a cl | imate: 1=Tropical (
Highlan | Savannah (Aw
d (Cwb) 5=Ho | • | | | 3=Humid Subt | ropical (Cwa) 4 | =Subtropical | | | | | Climate n° | | · | | | 1 | | | | | | | | | | | Climate | | | | Trop | ical Savar | | | | | | | | | | | | | | E | ne SEASON | Al | | | | | | | | | | Specify the crop and the climatic zone #### Cereals Postharvest Loss Calculator for AfricaVersion 2.7 - 17/02/2014 | | Home | Data Entry Area | PHL matrix | PHL estimates | Graphs | Quality | Sources | Composite
PHL | References | Production calculator | | | | | | |------------|--|---|------------------|--------------------------------|--------------------------------|---------|---------|------------------|-----------------|-----------------------|--|--|--|--|--| | | | Enter the GEOGRAPHICAL DATA data by replacing the red figures | | | | | | | | | | | | | | | Labelling | | Area of observation Botswana North-West Year 2013 | | | | | | | | | | | | | | | | | Enter another figure below to select a crop: 1=maize; 2=rice; 3=sorghum; 4=millet; 5=wheat; 6=barley; 7=teff; 8=fonio | | | | | | | | | | | | | | | Cereal n° | | | | | 1 | | | | | | | | | | | | Cereal | | | | | Maize | | | | | | | | | | | | | Enter a | nother figure below | v to select a cl | imate: 1=Tropical S
Highlan | Savannah (Aw)
d (Cwb) 5=Hot | | | 3=Humid Subt | ropical (Cwa) 4 | =Subtropical | | | | | | | Climate n° | | | | | 1 | | | | | | | | | | | | Climate | Tropical Savannah (Aw) | | | | | | | | | | | | | | | | | Enter the SEASONAL DATA by replacing the red figures | | | | | | | | | | | | | | | ## Enter your data: Seasonal data for your location - Size of the farms - Up to 3 seasons ## Up to 3 seasons in the year | | | Enter | l figures | | | | | | | | | | |---------------------|--------------|-----------------------------------|--------------|-------------|-------------|-------------|--|--|--|--|--|--| | | 1st s | eason | 3rd s | eason | | | | | | | | | | Farm type | small | large | small | large | small | large | | | | | | | | Production | 1400 tonnes | 1000 tonnes | 700 tonnes | 0 tonnes | 0 tonnes | 0 tonnes | | | | | | | | Marketed at harvest | 50 % (0-100) | 90 % (0-100) | 20 % (0-100) | 0 % (0-100) | 0 % (0-100) | 0 % (0-100) | | | | | | | | Rain at harvest | 1 1=yes | 1 1=yes | 1=yes | 1=yes | 1=yes | 1=yes | | | | | | | | Storage duration | 3 months | 6 months | 6 months | 0 months | 0 months | 0 months | | | | | | | | Larger Grain Borer | 1 1=yes | 1 1=yes 1 1=yes 1=yes 1=yes 1=yes | | | | | | | | | | | | | | Enter the SEASONAL DATA by replacing the red figures | | | | | | | | | | | | | | |---------------------|--------------|--|--------------|-------------|-------------|-------------|--|--|--|--|--|--|--|--|--| | | 1st | season | 2nd s | eason | 3rd s | eason | | | | | | | | | | | Farm type | small | large | small | large | small | large | | | | | | | | | | | Production | 1400 tonnes | 1000 tonnes | 700 tonnes | 0 tonnes | 0 tonnes | 0 tonnes | | | | | | | | | | | Marketed at harvest | 50 % (0-100) | 90 % (0-100) | 20 % (0-100) | 0 % (0-100) | 0 % (0-100) | 0 % (0-100) | | | | | | | | | | | Rain at harvest | 1 1=yes | 1 ∖=yes | 1=yes | 1=yes | 1=yes | 1=yes | | | | | | | | | | | Storage duration | 3 months | e nths | 6 months | 0 months | 0 months | 0 months | | | | | | | | | | | Larger Grain Borer | 1 1=yes | | 1 1=yes | 1=yes | 1=yes | 1=yes | | | | | | | | | | Figures for small and large scale farms www.aphlis.net | Postharvest loss estimates for cereals and other crops Quantities harvested, % marketed without storage.. | | | | Enter the SEASONAL DATA by replacing the red figures | | | | | | | | | | | | | | | |-----------------|-----------|--------------|--|--------------|-------------|-------------|-------------|--|--|--|--|--|--|--|--|--|--| | | | 1 | st season | 2nd s | season | 3rd season | | | | | | | | | | | | | | Farm type | small | large | small | large | small | large | | | | | | | | | | | | Production | | 1400 tonnes | 1000 tonnes | 700 tonnes | 0 tonnes | 0 tonnes | 0 tonnes | | | | | | | | | | | | Marketed at har | vest | 50 % (0-100) | 90 % (0-100) | 20 % (0-100) | 0 % (0-100) | 0 % (0-100) | 0 % (0-100) | | | | | | | | | | | | Rain at harvest | | 1 1=yes | 1 1=yes | 1=yes | 1=yes | 1=yes | 1=yes | | | | | | | | | | | | Storage duratio | n | 3 months | 6 months | 6 months | 0 months | 0 months | 0 months | | | | | | | | | | | | Larger Grain Bo | rer | 1 1=yes | 1 1=yes | 1 1=yes | 1=yes | 1=yes | 1=yes | | | | | | | | | | | ... rain at harvest or during drying, duration of storage presence of the LGB pest www.aphlis.net | Postharvest loss estimates for cereals and other crops | | | Enter the SEASONAL DATA by replacing the red figures | | | | | | | | | | | | | | |---------------------|------|--|-------|-----------|-------------------|-----------|----------|-----------|----------|-----------|----------|-----------|--|--|--| | | | 1st se | eason | | | 2nd s | eason | | | 3rd s | eason | | | | | | Farm type | | small | | large | | small | | large | | small | large | | | | | | Production | 1400 | tonnes | 1000 | tonnes | 700 | tonnes | 0 tonnes | | 0 tonnes | | 0 tonnes | | | | | | Marketed at harvest | 50 | % (0-100) | 90 | % (0-100) | 20 | % (0-100) | 0 | % (0-100) | 0 | % (0-100) | 0 | % (0-100) | | | | | Rain at harvest | 1 | 1=yes | 1 | 1=yes | | | | | Storage duration | 3 | months | 6 | months | 6 months 0 months | | | | 0 months | | | months | | | | | Larger Grain Borer | 1 | 1 1=yes 1 1=yes 1=yes 1=yes 1=yes 1=yes | | | | | | | | | | | | | | ### See the results: #### **Estimated losses** - for the value chain, - for each harvest and - for type of farm; - overall www.aphlis.net | Postharvest loss estimates for cereals and other crops | | | | | | | | | PHI | _ (% |) C | alcu | lati | on: | Mai | ze - | - Bo | tsw | ana | No | rth- | We | st - | 201 | 3 | | | | | | | |------------------------|----------------------|-----------------|----------------|-----------------|----------------|----------------------|-----------------|----------------|-----------------|----------------|----------------------|-----------------|----------------|-----------------|----------------|----------------------|-----------------|----------------|-----------------|----------------|----------------------|-----------------|----------------|-----------------|----------------|----------------------|-----------------|----------------|-----------------|----------------| | | | | | 1 | 1st s | easor | n | | | | | | | 2 | nd s | easo | n | | | | | | | | 3rd s | seaso | n | | | | | Farm type | | | small | | | | | large | e e | | | | small | | | | | large | • | | | | smal | I | | | | large | | | | Share of production | | | 58 | | | | | 42 | | | | | 100 | | | | | | | | | | | | | | | | | | | Destination | | sto | ore | ma | arket | | st | tore | ma | rket | | store | | ma | rket | | sto | ore | ma | rket | | sto | ore | market | | | sto | store | | rket | | Share | - Lile | 2 | 29 | 29 | 9.2 | iie | | 4 | 37 | 7.5 | ile | | 80 | 20 | 0.0 | i i | | | | | fle | | | | | i≡ | | | | | | | adjusted PHL profile | remaining grain | loss increment | remaining grain | loss increment | adjusted PHL profile | remaining grain | loss increment | remaining grain | loss increment | adjusted PHL profile | remaining grain | loss increment | remaining grain | loss increment | adjusted PHL profile | remaining grain | loss increment | remaining grain | loss Increment | adjusted PHL profile | remaining grain | loss increment | remaining grain | loss increment | adjusted PHL profile | remaining grain | loss increment | remaining grain | loss increment | | Steps | | | لــــا | | <u> </u> | | | | | <u> </u> | | | | | | | | | _ | | | | | _ | | | | | | | | | 16.3 | | 4.8 | 24 | | | | 0.7 | 31 | 6.1 | 6.4 | 75 | 5.1 | 19 | | 3.8 | | | | | 64 | 6.4 | | | | | | | | | | Platform drying | 4.0 | 23 | 1.0 | 23 | 1.0 | | | 0.1 | 30 | 1.1 | 4.0 | 72 | 3.0 | 18 | | 3.5 | | | | | | | | | | | | | | | | Threshing and Shelling | 1.3 | 23 | 0.3 | 23 | 0.3 | 2.3 | 3 | 0.1 | 30 | 0.7 | 1.3 | 71 | 0.9 | 18 | 0.2 | 2.3 | | | | | | | | | | | | | | | | Winnowing | <u> </u> | <u> </u> | oxdot | <u>ш</u> ′ | <u> </u> | <u> </u> | \perp | | <u> </u> | <u> </u> | <u> -</u> ' | | | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | | Transport to farm | 2.4 | 23 | 0.5 | 23 | 0.5 | | | 0.1 | 29 | 0.6 | | | 1.7 | 17 | 0.4 | 1.9 | | | | | | | | | | | | | | | | Farm storage | 5.3 | 21 | 1.2 | | <u> </u> | 4.6 | | 0.1 | | <u> </u> | 10.5 | 62 | 7.3 | | | | | | | | Δ | | | | 1 / | 0/ | 1 | | | | | Transport to market | 1.7 | | igsquare | 22 | 0.4 | 1.0 | | | 29 | 0.3 | | | | 17 | | 1.0 | | | | | | In | ni | 112 | 1 ' | % | 10 | 55 | | | | Market storage | 2.7 | | igsquare | 22 | 0.6 | 2.7 | | | 28 | 8.0 | | | | 17 | | 2.7 | | | | | | | | | | / 0 | | | | | | Total | | 21 | 7.8 | 22 | 7.5 | <u> </u> | 3 | 1.1 | 28 | 9.5 | <u> </u> | 62 | | | 3.4 | | | | | | | | | | | | | | | | | Farm type | | | small | - | | | | large | | | | | small | - | | | | large | • | | | | | | | | | | | | | Grain remaining | <u> </u> | | 43.0 | | | | | 31.1 | | | Щ. | | 78.5 | | | | | | | | | | | | | | | | | | | Lost grain | | | 15.3 | | | | | 10.6 | | | | | 21.5 | 1 | | easor | n | | | | | | | 2 | 2nr | easo | n | | | | | | | | 3rd s | seaso | n | | | | | Grain remaining | <u> </u> | | | | | 4.1 | | | | | <u></u> | | | | | - | | | | | <u> </u> | | | | | | | | | | | Lost grain | 2 | | | | | 25.9 | | | | | | <u> </u> | Total remaining | | | | | | | | | | | | | | | 5 | 70 | | | | | | | | | | | | | | | | Annual loss | | | | | | | | | | | | | | | 25 | % | | | | | | | | | | | | | | | www.aphlis.net | Postharvest loss estimates for cereals and other crops ### See the results: Estimated losses are also expressed in weight Total remaining Annual loss 2,328 tonnes tonnes #### Visualise the results: Estimated losses shown in graphs # Assess the quality of estimates: Reliability of the data used in calculations of loss estimates #### Access the references: Details of the published scientific literature used are also provided # ID number of publications – Full details available in the calculator from the References button | F | FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW TEAM Sign in | | | | | | | | | | | | | | |-----|---|---------------------|---------------------------|--------------|---------|-------------|-------|----------|--|---|--|---|--|--| | | Arial V 10 A A = = Sy | | | | | | | | | | | | | | | Pas | ** Format | | I <u>U</u> - <u>■</u> - | <u>⇔</u> - A | - = = = | 包括 | Merge | & Center | ▼ \$ ▼ % • 6.0 .00
.00 →.0 | Conditional Format as Formatting * Table * | | rt & Find & ter × Select × | | | | | Clipboard | 15 | Font | | G . | Align | ment | | Number 5 | Styles | Cells Editing | ^ | | | | A5 | 4 ▼ | : X , | f_x 52 | | | | | | | | | ~ | | | | | <u>Home</u> | PHL c | alculator | | Cı | rop specifi | | | | | | | | | | N° | Year of publication | Country /
Region | province | Maize | Sorghum | Millet | Rice | Wheat | Author | Title | Source | Full reference | | | | 43 | 1986 | Ethiopia | | | | | | | Kidane, Y and Habteyes
Y. | Food grain losses in traditional storage facilities in
selected areas of Ethiopia. Addis Ababa, December
1986. | Quoted in Boxall 1998 | Kidane, Y and Habteyes Y. (1986) Food grain losses in traditional storage facilities in selected areas of Ethiopia. Addis Ababa, December 1986. | | | | 44 | 1989 | Ethiopia | | | | | | | Kidane, Y. and Habteyes
Y. | Food grain losses in tradional storage facilities in three areas of Ethiopia. | In: Proceedings of Towards a food and nutrition
strategy for Ethiopia'. Alemaya University of
Agriculture, 8-12 December 1986, Alemaya,
Ethiopia. | Kidane, Y. and Habteyes Y. (1989) Food grain losses in tradional storage facilities in t
areas of Ethiopia. In: Proceedings of Towards a food and nutrition strategy for Ethiopia
Alemaya University of Agriculture, 8-12 December 1986, Alemaya, Ethiopia | | | | 45 | 1987 | Zimbabwe | | yes | | | | | Lars-Ove Jonsson and
Kashweka K. | Relationship between drying, harvest and storage losses, production and consumption of maize for a rural household in Zambia. | In: Holmes J.C. (editor) Improving food crop production on smal farms in Africa. FAO/SIDA Seminar on increased Food Production through low-cost food crops technology, Harare (Zimbabwe), 2-17 March 1987. | Lars-Ove Jonsson and Kashweka K. (1987) Relationship between drying, harvest and storage losses, production and consumption of maize for a rural household in Zambia. Holmes J.C. (editor) Improving food crop production on small farms in Africa. FAO/SIDA Seminar on increased Food Production through low-cost food crops technology, Harare (Zimbabwe), 2-17 March 1987. | | | | 46 | 1991 | Somalia | | | | | | | Lavinge R.J. | Stored grain insetcs in underground storage pits in
Somlia and their control. | Insect Science and its Application, 12 (5/6), 571-578. | Lavinge R.J. (1991) Stored grain insetcs in underground storage pits in Somlia and the control. Insect Science and its Application, 12 (5/6), 571-578. | | | | 47 | 2008 | Ethiopia | Eastern
Harange | | yes | | | | Lemessa F. | Under and above ground storage loss of sorghum grain in Eastern Harange, Ethiopia. | Agricualtural mechnaisation in Asia, Africa and latin America. 39 (1) 49-52 | Lemessa F. (2008) Under and above ground storage loss of sorghum grain in Eastern
Harange, Ethiopia. Agricualtural mechnaisation in Asia, Africa and latin America. 39 (1)
52 | | | | 48 | 1069 | Ethiopia | | | | | | | McFarlane J.A. | A study of the storage losses and allied problems in
Ethiopia. | Report of the Tropical Products Institute. Pp.67. (Quoted in Boxall 1998) | McFarlane J.A. (1969) A study of the storage losses and allied problems in Ethiopia. F of the Tropical Products Institute. Pp.67. | | | | 49 | 1987 | Africa | | | | | | | McFarlane J.A. | Storage methods in realtion to post-harvest losses in cereals. | Proceedings of a 'Study workshop on on-farm
and post-harvest losses of cereal crops in Africa
due to epsts and diseases'. Nairobi, Kenya, 11-
15 October 1987. 101-106 | McFarlane J.A. (1987) Storage methods in realtion to post-harvest losses in cereals.
Proceedings of a 'Study workshop on on-farm and post-harvest losses of cereal crops in
Africa due to epsts and diseases'. Nairobi, Kenya, 11-15 October 1987. 101-106 | | | | 50 | 2003 | Global | | | yes | | | | McNeill S.G. and
Montross M.D. | Harvesting, drying and storing grain sorghum. | University of Kentucky, Cooperative extension service, AEN-17, pp 5. | McNeill S.G. and Montross M.D. (2003) Harvesting, drying and storing grain sorghum. University of Kentucky, Cooperative extension service, AEN-17, pp 5. | | | | 51 | 1995 | Zimbabwe | | yes | | | | | Mvumi B.M., Giga D.P.
and Chiuswa D.V. | The maize (Zea mays L.) post-production practices of smallholder farmers in Zimbabwe: findings from surveys. | Journal of Applied Science in Southern Africa 1 (2), 115-130. | Mvumi B.M., Giga D.P. and Chiuswa D.V. (1995) The maize (Zea mays L.) post-produi
practices of smallholder farmers in Zimbabwe: findings from surveys. Journal of Applied
Science in Southern Africa 1 (2), 115-130. | | | | 52 | 1993 | Kenya | South Nyanza
district | yes | yes | | | | Nyambo B.T. | Post-harvest maize and sorghum grain losses in tradtional and imporved stores in South Nyanza district, Kenya. | International Journal of Pest Management, 39(2) 181-187 | Nyambo B.T. (1993) Post-harvest maize and sorghum grain losses in tradtional and imponved stores in South Nyanza district, Kenya. International Journal of Pest Management, 39(2) 181-187 | | | | 53 | 1991 | Africa | | yes | | | | | Odogola W.R. and
Henriksson R. | Post harvest management and storage of maize. | UNDP/OPS Regional Programme, Harare
December 1991. (very useful background on
post-harvest handling) | Odogola W.R. and Henriksson R. (1991) Post harvest management and storage of mai: UNDP/OPS Regional Programme, Harare December 1991. | | | | 54 | 1988 | Togo | | yes | | | | | Pantenius C.U. | Storage losses in traditonal maize granaries in Togo. | Insect science and its application ((6), 725-735 | Pantenius C.U. (1988) Storage losses in traditional maize granaries in Togo. Insect sc
and its application ((6), 725-735 | | | | 55 | 1985 | India | Andhra Pradesh | | | yes | | | Pushpamma, P.,
Chittemma Rao, K.,
Sudhakar Reddy, K. &
Prameela, D. | Storage of sorghum and millets at domestic level in
Andhra Pradesh, India. | Bull. Grain Technol., 23: 50-60. | Pushpamma, P., Chittemma Rao, K., Sudhakar Reddy, K. & Prameela, D. (1985). Sto of sorghum and millets at domestic level in Andhra Pradesh, India. Bull. Grain Technol. 50-60. | | | | 56 | 1984 | Africa
Southern | | | | | | | Qhobela M., Moboloka
M. and Maepe M. | Post production problems in Lesotho. | Proceedings of a Workshop - post harvest loss
prevention in the SADCC Region, Harare,
Zimbabwe, November 1984. | Qhobela M., Moboloka M. and Maepe M. (1984) Post production problems in Lesotho. Proceedings of a Workshop - post harvest loss prevention in the SADCC Region, Harar Zimbabwe, November 1984. | | | | REA | DY | | | | | | | | | | - | Ⅲ ■ | | | PHL_Calculator_2_7_2014_02_17.xlsx - Excel Lastly, the APHLIS calculator provides a table to add up postharvest losses for several commodities in the location | | | | | | ea of observation | | | | | | | | | |---------------------------------------|---------------------|-------------------|-------------|-----------------|---------------------------|-----------------------|--|--|--|--|--|--|--| | | Area of observation | Tanz | | Year | | | | | | | | | | | | Cereal | Annual production | Annual loss | Total remaining | Share of total production | Share of total losses | | | | | | | | | | | tonnes | tonnes | tonnes | % | % | | | | | | | | | | Maize | 125,378 | 26,233 | 99,145 | 84.2 | 88.4 | | | | | | | | | | Sorghum | 23,456 | 3,456 | 20,000 | 15.8 | 11.6 | Add the la | oss figure | C | | | | | | | | | Write the PHL estimate for | | | | idd till i | Jos figure | | | | | | | | | | each cereal into this table. | | | | | | | | | | | | | | | The table helps you to | | | | | | | | | | | | | | | compute the combined PHL | | | | | | | | | | | | | | | estimate for all cereals in the | | | | 1. 1 | C | | | | | | | | | | area of observation | | | Ca | aiculator | for each | OT | +1 | aa akaba | of intoro | o+ | | | | | | | | | | | | LI | ie crops | of interes | St | | | | | | | | | | | | | ' | Total | 148,834 | 29,689 | 119,145 | 100 | 100 | | | | | | | | | | Total remaining % | | | 80% | | | | | | | | | | | | Annual loss % | | | 20% | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | ## The future of APHLIS ## To improve APHLIS, the Bill & Melinda Gates Foundation has funded the new "APHLIS+" project #### BILL & MELINDA GATES foundation #### **APHLIS+ will:** - Increase the type of crops covered - Improve the accuracy of the estimation model - Add estimates of value and nutritional losses - Update the user interface - Add warning systems on risks of LGB or aflatoxin - Further develop the network of experts ## www.aphlis.net